pandas数据的归一化
归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式。主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理。
常见归一化算法
1、min-max标准化(Min-Max Normalization)
也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下:
\( \hat{x} = \frac{x −x_{min}}{x_{max} − x_{min}} \)
其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。
2、Z-score标准化方法
这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1。
转化函数为: \( \hat{x} = \frac{x-\mu}{\sigma} \)
其中 μ 为所有样本数据的均值, \( \sigma \) 为所有样本数据的标准差。该种归一化方式要求原始数据的分布可以近似为高斯分布,否则处理的效果会变差。
pandas归一化方法
1、min-max标准化
| import numpy as np
import pandas as pd
np.random.seed(1)
df = pd.DataFrame(np.random.randn(4, 4) * 4 + 3)
print(df)
"""
0 1 2 3
0 9.497381 0.552974 0.887313 -1.291874
1 6.461631 -6.206155 9.979247 -0.044828
2 4.276156 2.002518 8.848432 -5.240563
3 1.710331 1.463783 7.535078 -1.399565
"""
df_norm = (df - df.min()) / (df.max() - df.min())
print(df_norm)
"""
0 1 2 3
0 1.000000 0.823413 0.000000 0.759986
1 0.610154 0.000000 1.000000 1.000000
2 0.329499 1.000000 0.875624 0.000000
3 0.000000 0.934370 0.731172 0.739260
"""
df_norm2=df.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x)))
print(df_norm2)
"""
0 1 2 3
0 1.000000 0.823413 0.000000 0.759986
1 0.610154 0.000000 1.000000 1.000000
2 0.329499 1.000000 0.875624 0.000000
3 0.000000 0.934370 0.731172 0.739260
"""
|
2、Z-score标准化方法
| import numpy as np
import pandas as pd
np.random.seed(1)
df = pd.DataFrame(np.random.randn(4, 4) * 4 + 3)
print(df)
"""
0 1 2 3
0 9.497381 0.552974 0.887313 -1.291874
1 6.461631 -6.206155 9.979247 -0.044828
2 4.276156 2.002518 8.848432 -5.240563
3 1.710331 1.463783 7.535078 -1.399565
"""
df_norm = (df - df.mean()) / (df.std())
print(df_norm)
"""
0 1 2 3
0 1.213741 0.287871 -1.454237 0.312166
1 0.295115 -1.481492 0.777218 0.866440
2 -0.366215 0.667324 0.499679 -1.442906
3 -1.142640 0.526297 0.177340 0.264301
"""
df_norm2 = df.apply(lambda x: (x - np.mean(x)) / (np.std(x)))
print(df_norm2)
"""
0 1 2 3
0 1.401507 0.332405 -1.679208 0.360458
1 0.340769 -1.710680 0.897454 1.000479
2 -0.422869 0.770560 0.576980 -1.666125
3 -1.319407 0.607716 0.204774 0.305188
"""
|
比较好奇为啥上面df.std()和np.std()算出来的值不一样,估计哪里有点不一样的地方,还需要研究研究。下面做了一个简单的实验,不知道df.std()具体是怎么算的。
| import numpy as np
import pandas as pd
data = [(1, 2), (3, 4)]
df = pd.DataFrame(data)
print(df)
"""
0 1
0 1 2
1 3 4
"""
df_std1 = df.std(axis=0)
print(df_std1)
"""
0 1.414214
1 1.414214
"""
df_std2 = df.apply(lambda x: np.std(x), axis=0)
print(df_std2)
"""
0 1.0
1 1.0
"""
|
经过后续学习这篇帖子找到了答案:
different-std-in-pandas-vs-numpy
| import numpy as np
import pandas as pd
data = [(1, 2), (3, 4)]
df = pd.DataFrame(data)
print(df)
"""
0 1
0 1 2
1 3 4
"""
df_std1 = df.std(axis=0)
print(df_std1)
"""
0 1.414214
1 1.414214
"""
df_std2 = df.apply(lambda x: np.std(x,ddof=1), axis=0)
print(df_std2)
"""
0 1.414214
1 1.414214
"""
|
ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero.
这个是numpy对ddof的解释。
简单点说np.std()计算的是标准差,df.std()计算的是标准差的无偏估计
pandas 数据归一化以及行删除例程的方法
再添加一个归一化和删除例程序的方法
| #coding:utf8
import pandas as pd
import numpy as np
from pandas import Series,DataFrame
# 如果有id列,则需先删除id列再进行对应操作,最后再补上
# 统计的时候不需要用到id列,删除的时候需要考虑
# delete row
def row_del(df, num_percent, label_len = 0):
#print list(df.count(axis=1))
col_num = len(list(list(df.values)[1])) - label_len # -1为考虑带标签
if col_num<0:
print 'Error'
#print int(col_num*num_percent)
return df.dropna(axis=0, how='any', thresh=int(col_num*num_percent))
# 如果有字符串类型,则报错
# data normalization -1 to 1
# label_col: 不需考虑的类标,可以为字符串或字符串列表
# 数值类型统一到float64
def data_normalization(df, label_col = []):
lab_len = len(label_col)
print label_col
if lab_len>0:
df_temp = df.drop(label_col, axis = 1)
df_lab = df[label_col]
print df_lab
else:
df_temp = df
max_val = list(df_temp.max(axis=0))
min_val = list(df_temp.min(axis=0))
mean_val = list((df_temp.max(axis=0) + df_temp.min(axis=0)) / 2)
nan_values = df_temp.isnull().values
row_num = len(list(df_temp.values))
col_num = len(list(df_temp.values)[1])
for rn in range(row_num):
#data_values_r = list(data_values[rn])
nan_values_r = list(nan_values[rn])
for cn in range(col_num):
if nan_values_r[cn] == False:
df_temp.values[rn][cn] = 2 * (df_temp.values[rn][cn] - mean_val[cn])/(max_val[cn] - min_val[cn])
else:
print 'Wrong'
for index,lab in enumerate(label_col):
df_temp.insert(index, lab, df_lab[lab])
return df_temp
# 创建一个带有缺失值的数据框:
df = pd.DataFrame(np.random.randn(5,3), index=list('abcde'), columns=['one','two','three'])
df.ix[1,:-1]=np.nan
df.ix[1:-1,2]=np.nan
df.ix[0,0]=int(1)
df.ix[2,2]='abc'
# 查看一下数据内容:
print '\ndf1'
print df
print row_del(df, 0.8)
print '-------------------------'
df = data_normalization(df, ['two', 'three'])
print df
print df.dtypes
print (type(df.ix[2,2]))
|
参考资料:
1、https://stackoverflow.com/questions/12525722/normalize-data-in-pandas
2、https://stackoverflow.com/questions/26414913/normalize-columns-of-pandas-data-frame
3、https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
凡本网注明"来源:XXX "的文/图/视频等稿件,本网转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如涉及作品内容、版权和其它问题,请与本网联系,我们将在第一时间删除内容!
作者: 程序员学编程, 夜月xl
来源: https://blog.csdn.net/hjxzb/article/details/78610961 , https://www.jb51.net/article/150521.htm